
SIBRE – the world of industrial brakes

STORMBRAKES

CONCEPTION

With a Team of experienced engineers and service technicians we have the knowledge to stand behind our slogan "Sure to be Safe". Through this knowledge and experience the SIBRE Team has a complete understanding of Braking System requirements, and the consequences of an inferior or flawed product. SIBRE has the flexibility to design, build, and test in our own facility, allowing free thinking ideas and concepts to be realized.

ENGINEERING

Based on the collective decades of experience, our engineers, technicians, and input from our customers, the SIBRE R & D department, can develop, manufacture and test products heavy industry can rely on. Using state of the art software and the latest innovative hardware, the SIBRE Team can achieve optimal products. From innovative concepts to detailed construction plans, our R & D department consistently develops reliable SIBRE Products.

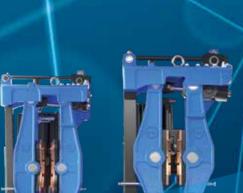
PRODUCTION

With a well-trained, long-standing team, and a newly expanded modern production hall, SIBRE is producing quality. From individual components and parts to final assembly, SIBRE stands firm on sustainable product quality.

QUALITY

Being ISO 9001 certified, SIBRE is guaranteeing the highest quality of each individual part and the entire brake assembly. With the most currently available measuring and testing equipment, the SIBRE Team has the capability to check for raw material properties and dimensional accuracy, on each critical component. These capabilities ensure the functional reliability customers have come to depend on from SIBRE.

from conception to high quality brakes



INTERNATIONAL PRESENCE

With 11 offices strategically placed on all continents, SIBRE is truly a renowned Global Player.

We pride ourselves in being a reliable partner for safety relevant components. Through our well-established sales and service locations, we have created solid cooperation, that often exceed customer expectations. Among the industries we support, Container and Material Handling, Mining and Metals, Forestry, Oil and Gas, Wastewater Treatment, Movable Bridges, and Hydropower to name a few, SIBRE's well-situated locations allow for responsive action to serve our customers.

5

CONCEPTION & ENGINEERING

for **innovative** brake-systems

CONCEPTION

Sure to Be Safe. The SIBRE slogan and motto.

Realizing People's lives depend on the safest working environments, in some of the most inhospitable places, the SIBRE Team is consistently discussing, consulting, analyzing, and verifying ideas to create new components and systems. Sure to Be Safe. The lives of real people depend on it. This ever-flowing conversation is not just an internal practice; we actively seek input from industry. We engage industry leaders, engineering and consulting firms, and the all-important persons responsible for maintaining equipment.

These cooperative discussions create a true partnership between manufacturer and user. The ability of our product developers to engage dynamic thinkers allow the best possible solutions.

ENGINEERING

Implementing ideas and concepts belong to the dynamic engineering team at SIBRE.

This energizing team is always on the mission to safeguard people and equipment. The redesigning of our products is as important as bringing to life new concepts.

With the availability of the most modern hardware and software the engineering team has made the tried and true SIBRE range more efficient and maintenance friendly. This dynamic group of engineers is an important part of SIBRE being a global supplier in the world of industrial brakes, couplings and crane wheels.

Made in Germany, standing behind the heritage of German Engineering.

PRODUCTION & Q U A L I T Y

made in **Germany**

PRODUCTION

With a steadily expanding product offering, the extending global network of offices and activities, so to the SIBRE production facilities grow. Our machining facility in Haiger/Germany and our assembly plant, just up the road in Eschenburg/Germany, have also been growing. Both facilities have seen significant modernization and expansion to accommodate the demand for highly engineered integral products. Since 2018 several new lines have been installed. Our central production plant located in Haiger, Germany boasts several state-of-the-art CNC machines. These additions allow for tighter control of production and faster response times to customer requirements. This growth has afforded SIBRE the honor of being a good steward to our local communities, and continuing the solid reputation Made in Germany has been known for the world over for.

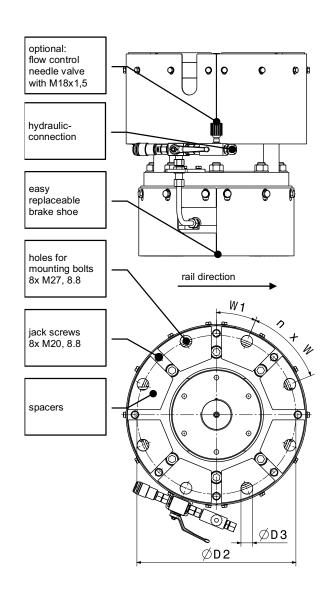
QUALITY

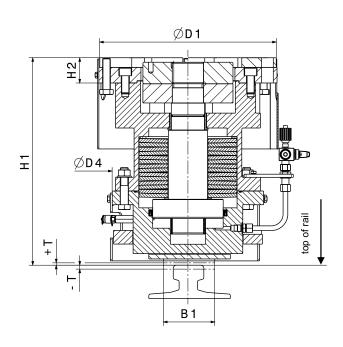
High-quality, reliable braking systems and drive components require a consistent quality standard.

With our internal development and simulation laboratory, both individual components and fully assembled systems are put through their paces. In addition to function and load simulation, we also focus on checking, reaction times, material properties and dimensional accuracy.

SIBRE quality

– made in Germany




HYDRAULIC RAIL PUSHER

HYDRAULIC RAIL PUSHER RPS 200 & 300

M 1501 335 E-EN-2017-10

HYDRAULIC DATA:

medium: HLP-hydraulic oil DIN 51524-T2

HLP Synth 32 standard

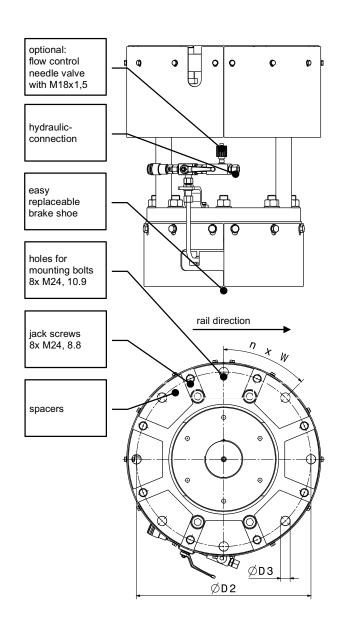
temperature range: [-15°C.....+40°C]

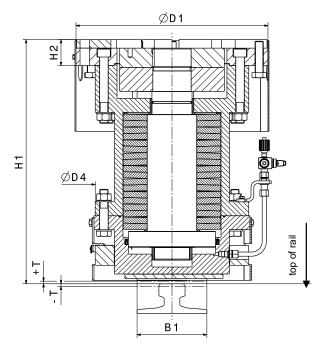
we recommend: SIBRE-hydraulic power packs


V3.B *) for RPS 200 V3.C *) for RPS 300

with electronic control box acc.

data sheet M 1501 264 E


*) max. 4 brakes per power pack dimensional drawings upon request


Туре	H1 mm	H2 mm	B1 mm	+T mm	-T mm	D1 mm	D2 mm	D3 mm	D4 mm	W1	n x W
RPS 200	530	64,5	125	+9	-9	455	406	30	397	22,5°	8 x 45°
RPS 300	630	64,5	125	+9	-9	455	406	30	397	22,5°	8 x 45°
Туре	Holdin	g force	ra	ng force at ail tolerand	:e	Release pressure		max. operating pressure		Hydraulic- connection	Weight
			+T		-T			<u>'</u>			
RPS 200	100	kN	120 kN		75 kN	110	bar	150	bar	3/8"	395 kg
RPS 300	160	kN	180 kN		135 kN	160	bar	205	bar	3/8"	440 kg

HYDRAULIC RAIL PUSHER RPS 450

M 1501 354 E-EN-2017-10

HYDRAULIC DATA:

medium: HLP-hydraulic oil DIN 51524-T2

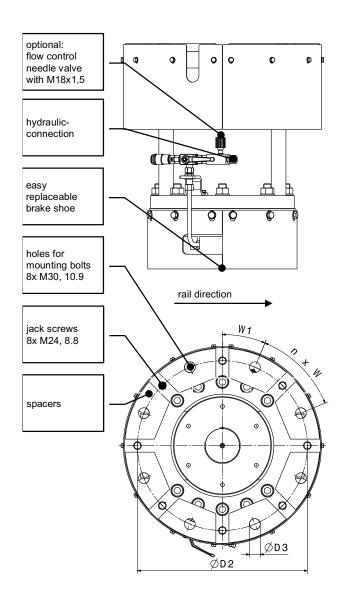
HLP Synth 32 standard

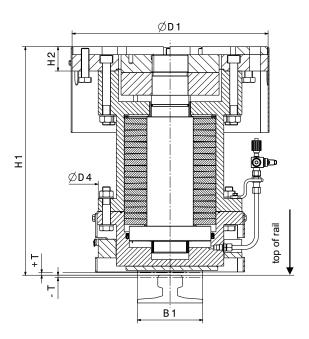
temperature range: [-15°C.....+40°C]

we recommend: SIBRE-hydraulic power pack

V3.D *) for RPS 450

with electronic control box acc. data sheet M 1501 264 E


*) max. 4 brakes per power pack dimensional drawings upon request


Туре	H1 mm	H2 mm	B1 mm	+T mm	-T mm	D1 mm	D2 mm	D3 mm	D4 mm	W1	n x W
RPS 450	700	74,5	200	+7,5	-7,5	550	500	27	457	-	8 x 45°
Туре	Holdin	g force		ing force at ail tolerand		Release pressure		max. operating pressure		Hydraulic- connection	Weight
			+T		-T					2011112211211	
RPS 450	225	kN	299 kN	l	148 kN	145	bar	175	bar	1/2"	670 kg

HYDRAULIC RAIL PUSHER RPS 610

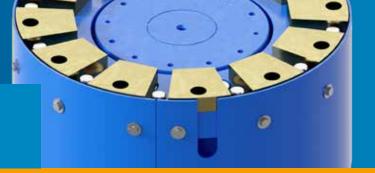
M 1501 448 E-EN-2017-10

HYDRAULIC DATA:

medium: HLP-Hydraulic oil DIN 51524-T2

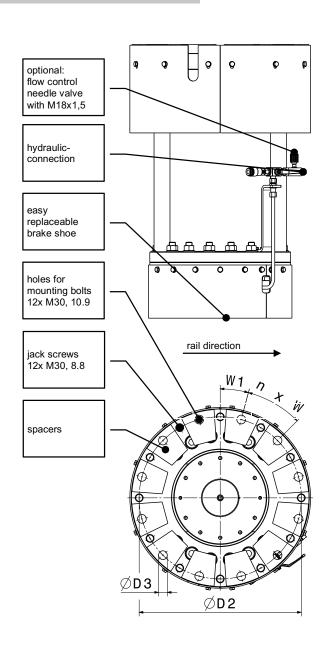
HLP Synth 32 standard

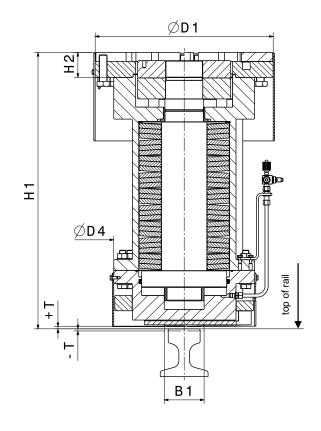
temperature range: [-15°C.....+40°C]


we recommend: SIBRE-hydraulic power pack

V3.C *) for RPS 610

with electronic control box acc. data sheet M 1501 264 E


*) max. 4 brakes per power pack dimensional drawings upon request


Туре	H1	H2	B1	+T	-T	D1 D2		D3	D4	W1	n x W
-71	mm	mm	mm	mm	mm	mm	mm	mm	mm mm		
RPS 610	700	74,5	200	+7,5	-7,5	600	520	33	457	22,5°	8 x 45°
Туре	Holdin	g force		ing force a ail toleran		Release pressure		max. operating pressure		Hydraulic- connection	Weight
			+T		-T			pres	Sui C	Connection	
RPS 610	275	kN	346 kN	l	200 kN	165	bar	205	bar	1/2"	690 kg

HYDRAULIC RAIL PUSHER RPS 800

M 1501 449 E-EN-2017-10

HYDRAULIC DATA:

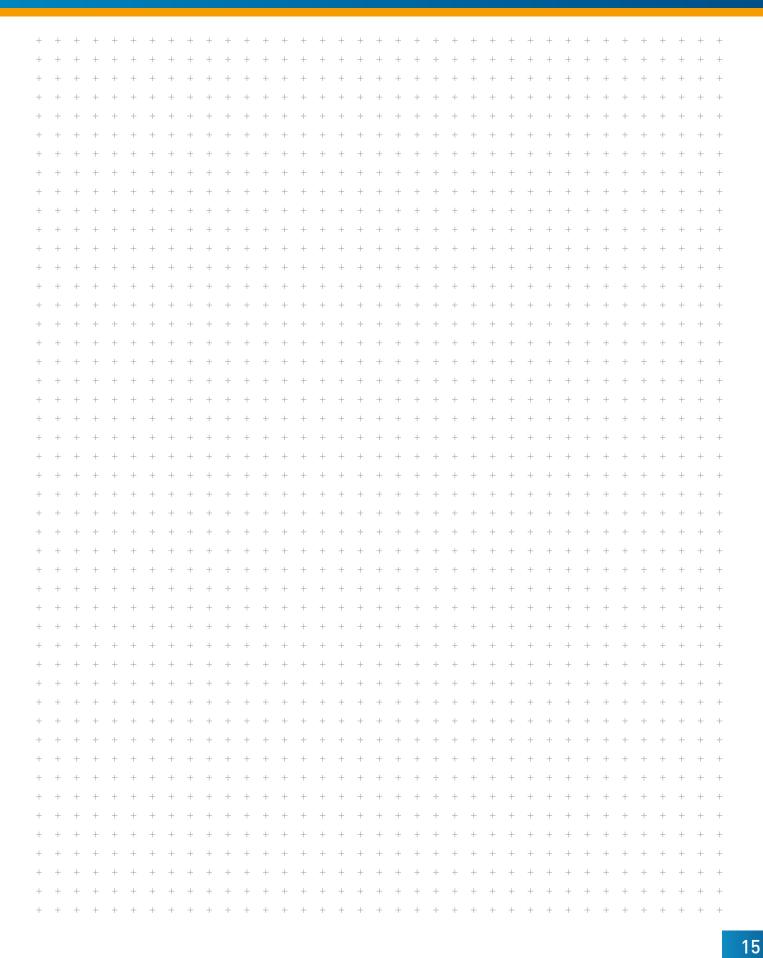
medium: HLP-hydraulic oil DIN 51524-T2

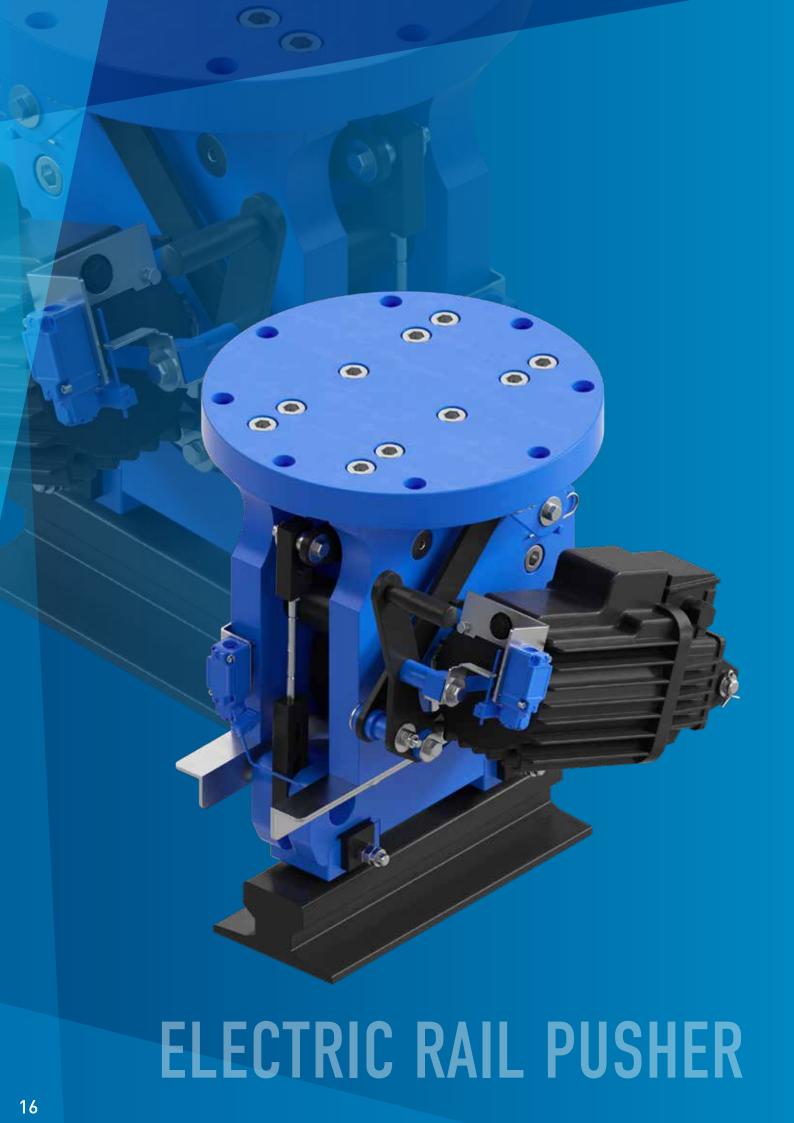
HLP Synth 32 standard

temperature range: (-15°C.....+40°C)

we recommend: SIBRE-hydraulic power pack

V3.C-S *) for RPS 800 with electronic control box acc.

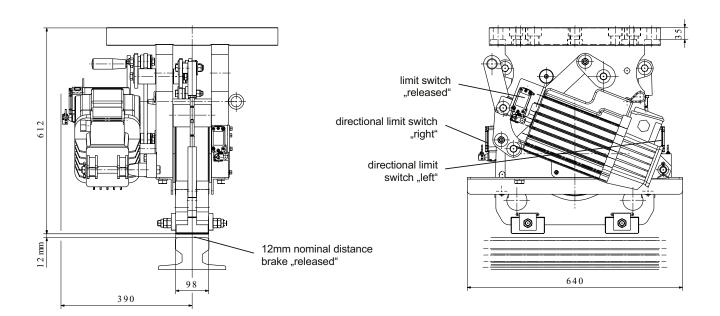

data sheet M 1501 264 E

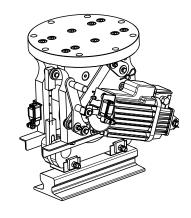

*) max. 2 brakes per power pack

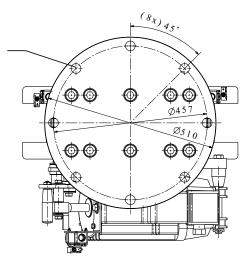
dimensional drawings upon

request

Туре	H1	H2	B1	+T	-T	D1	D2	D3	D4	W1	n x W
Турс	mm	mm	mm	mm	mm	mm	mm	mm	mm	, vv	11 / 17
RPS 800	1040	94	150	+8	-8	670	610	33	530	15°	12 x 30°
Туре	Holdin	g force		ng force at ail tolerand		Release	pressure	max. op	erating sure	Hydraulic- connection	Weight
			+T		-T			pres	Juic	Connection	
RPS 800	400	kN	500 kN		300 kN	180	bar	210	bar	1/2"	1320 kg






ELECTRIC RAIL PUSHER RTCB 225-80/6

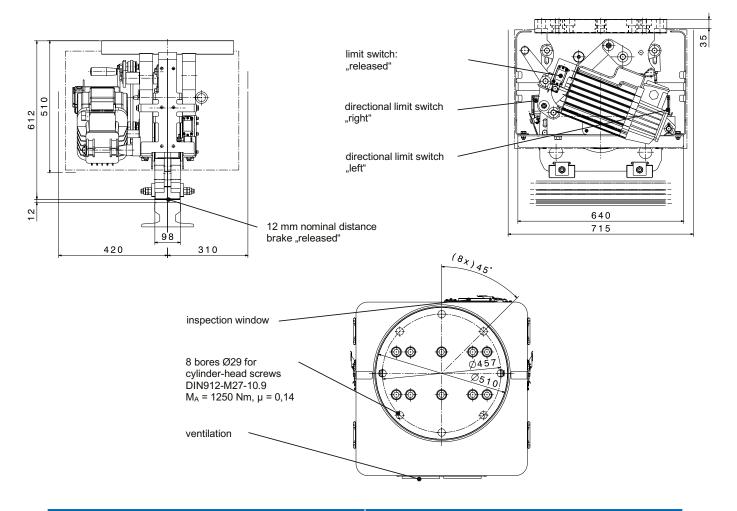
M 1501 361 E-EN-2009-03

8 bores Ø29 for cylinder-head screws DIN912-M27x80-10.9 MA= 1250Nm, μ 0,14

TECHNICAL DATA:

- Bi-directionally acting, static storm brake for gantry
 travel.
- Max. holding force FH =225 KN. It is generated by a wedge clamped between clamp wheel and crane rail.
- Released by Eldro thruster.
- Thruster with lowering valve and c-spring.
- With manual release lockable in released position.
- Field replaceable brake shoes.
- Brake shoes hardened and on the area of support it is carried out with sprockets.
- Limit switch for brake "released".
- Limit switch for directional indication.
- Weight approx. 400kg.

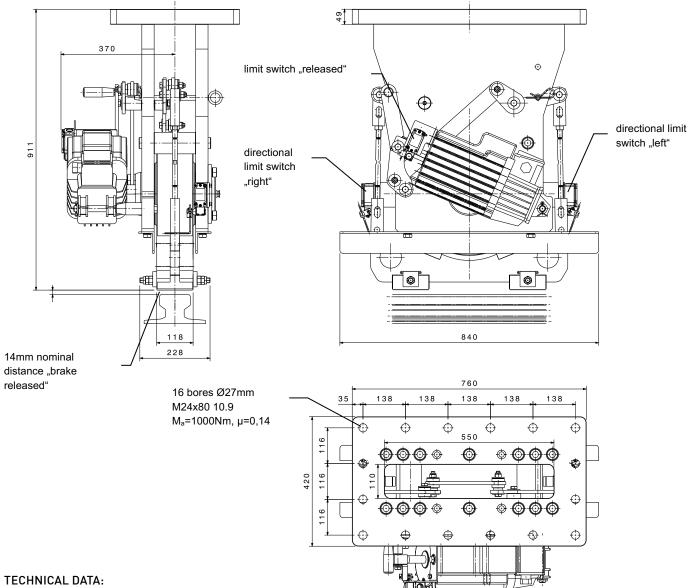
INFORMATION:


- The crane can travel between 50mm and 100mm before the rail brake is engaged.
- Nominal gap between rail and released brake shoe is 12mm.
- Max. permissible deviation of rail height is +/- 6mm.
- The rail brake is designed for installation under gantry travel cross-beam.

ELECTRIC RAIL PUSHER RTCB 225-80/6

M 1501 434 E-EN-2016-10

with protection cover



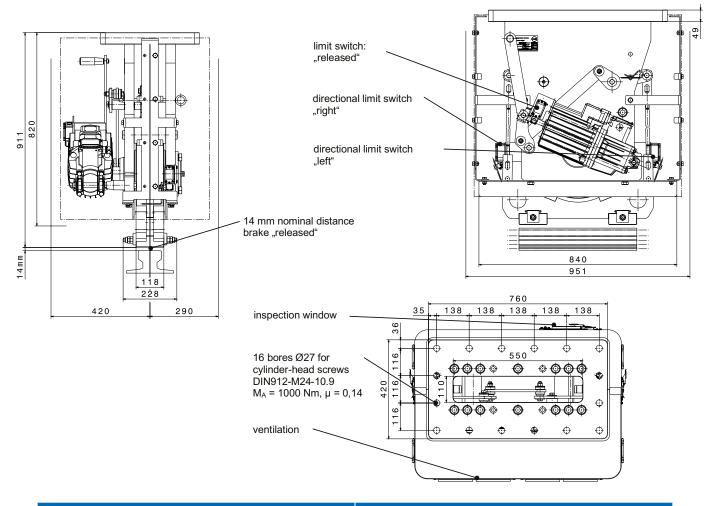
Technical Data:	Information:
Bi-directionally acting, static storm brake for gantry travel	The crane can travel between 50 mm and 100 mm before the rail brake is engaged
Max. holding force FH = 225 kN, it is generated by a wedge clamped between clamp wheel and crane rail	Nominal gap between rail and released brake show is 12 mm
Released with Eldro thruster	Max. permissible deviation of rail height is +/- 6 mm
Thruster with lowering valve and c-spring	The rail brake is designed for installation under gantry travel cross-beam
With manual release loackable in released position	
Field replaceable brake shoes	
Brake shoes hardened and on the are of support it is carried out with sprockets	
Limit switch for brake "released"	
Limit switch for directional indication	
Option A: steel version powdered (80 μ m), fittings, inspection window, ventilation of stainless steel;	
weight approx. 395 kg	
Option B: stainless steel version powdered (80 μm), fittings, inspection window, ventilation of stainless steel; weight approx. 395 kg	

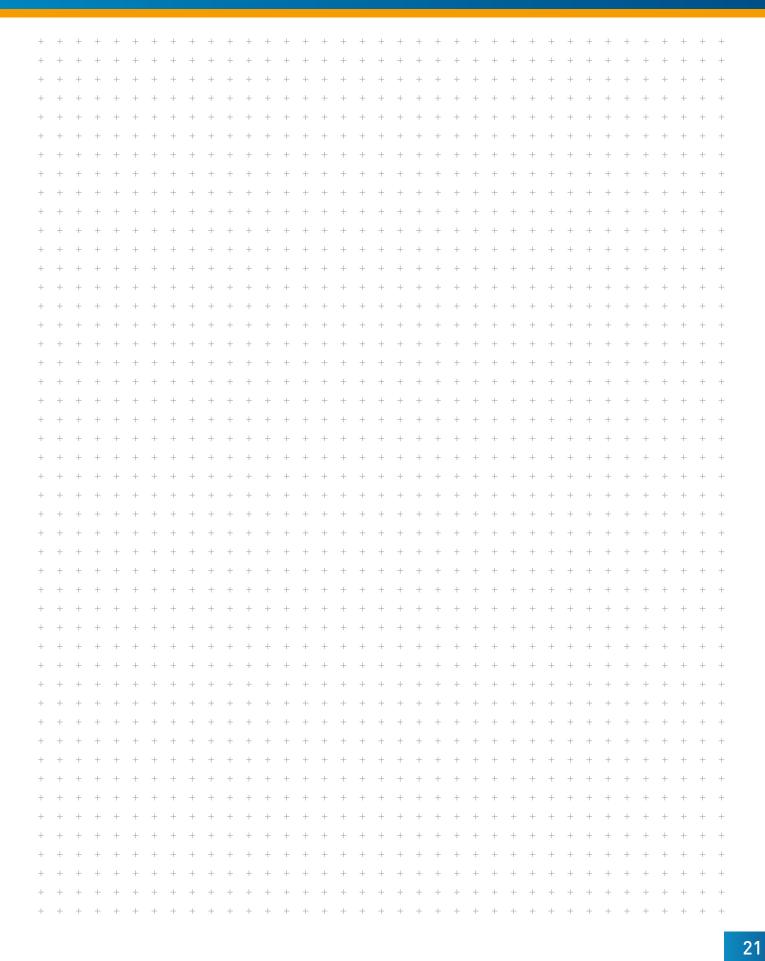
ELECTRIC RAIL PUSHER RTCB 350-80/6

M 1501 384 E-EN-2011-10

- Bi-directionally acting, static storm brake for gantry travel
- Max. holding force FH =350 KN. It is generated by a wedge clamped between clamp wheel and crane rail.
- Released by Eldro thruster.
- Thruster with lowering valve and c-spring.
- With manual release lockable in released position.
- Field replaceable brake shoes.
- Brake shoes hardened and on the area of support it is carried out with sprockets.
- · Limit switch for brake "released".
- · Limit switch for directional indication.
- Weight approx. 600kg.

INFORMATION:

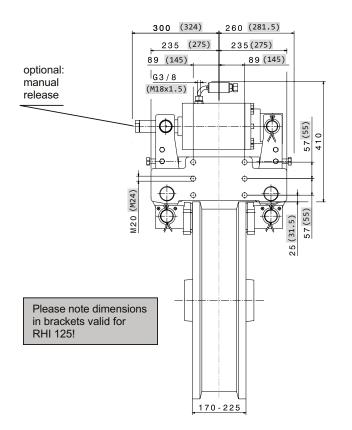

- The crane can travel between 50mm and 90mm before the rail brake is engaged.
- Nominal gap between rail and released brake shoe is 14mm.
- Max. permissible deviation of rail height is +/- 8mm.
- The rail brake is designed for installation under gantry travel cross-beam.

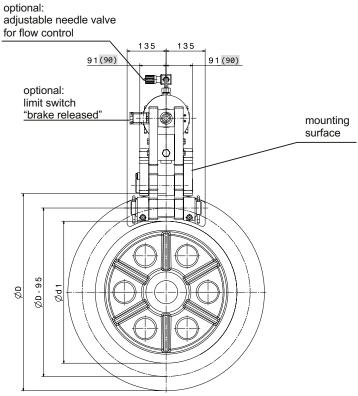

ELECTRIC RAIL PUSHER RTCB 350-80/6

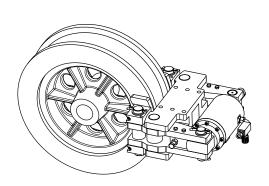
M 1501 435 E-EN-2016-10

with protection cover

Technical Data:	Information:
Bi-directionally acting, static storm brake for gantry travel	The crane can travel between 50 mm and 90 mm before the rail brake is engaged
Max. holding force FH = 350 kN, it is generated by a wedge clamped between clamp wheel and crane rail	Nominal gap between rail and released brake show is 14 mm
Released with Eldro thruster	Max. permissible deviation of rail height is +/- 8 mm
Thruster with lowering valve and c-spring	The rail brake is designed for installation under gantry travel cross-beam
With manual release loackable in released position	
Field replaceable brake shoes	
Brake shoes hardened and on the area of support it is carried out with sprockets	
Limit switch for brake "released"	
Limit switch for directional indication	
Option A: steel version powdered (80 μ m), fittings, inspection window, ventilation of stainless steel; weight approx. 643 kg	
Option B: stainless steel version powdered (80 μ m), fittings, inspection window, ventilation of stainless steel; weight approx. 643 kg	

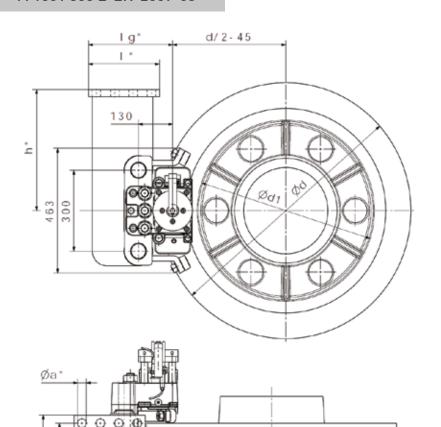


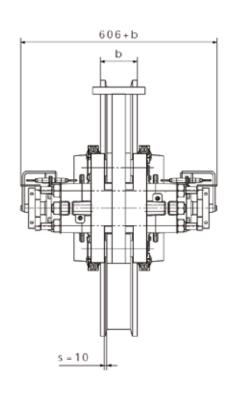


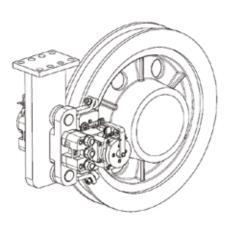


WHEEL BRAKE RHI 30/56/70/85/125

M 1501 307 E-EN- 2013-11

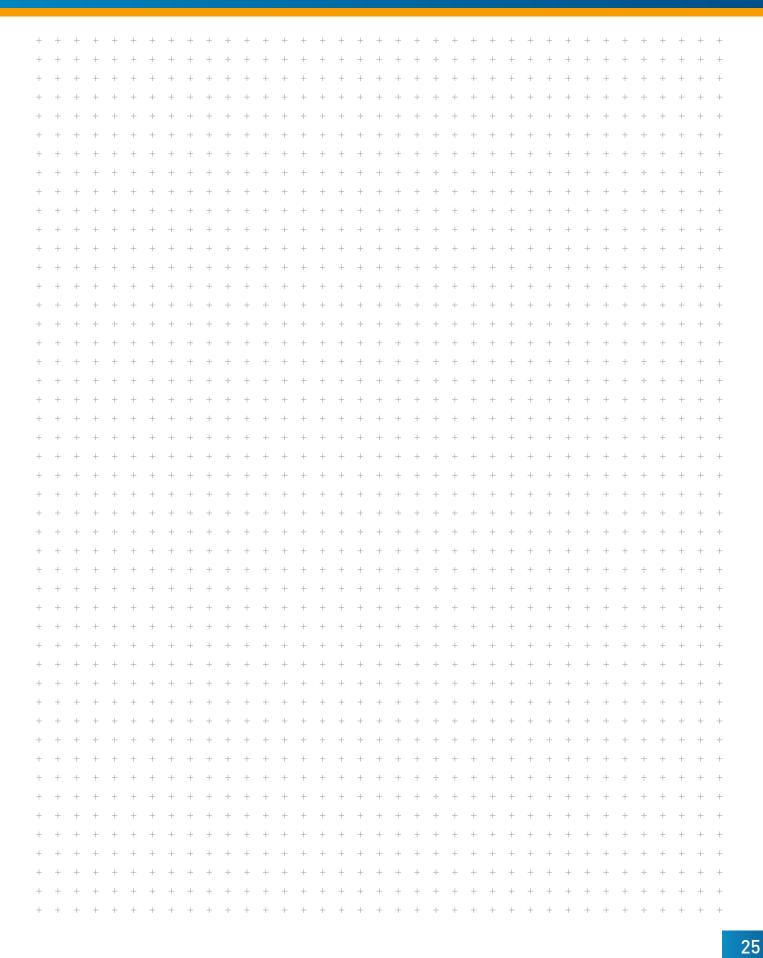

Linings								
material		sinter						
average friction coeff	μ	0,35						

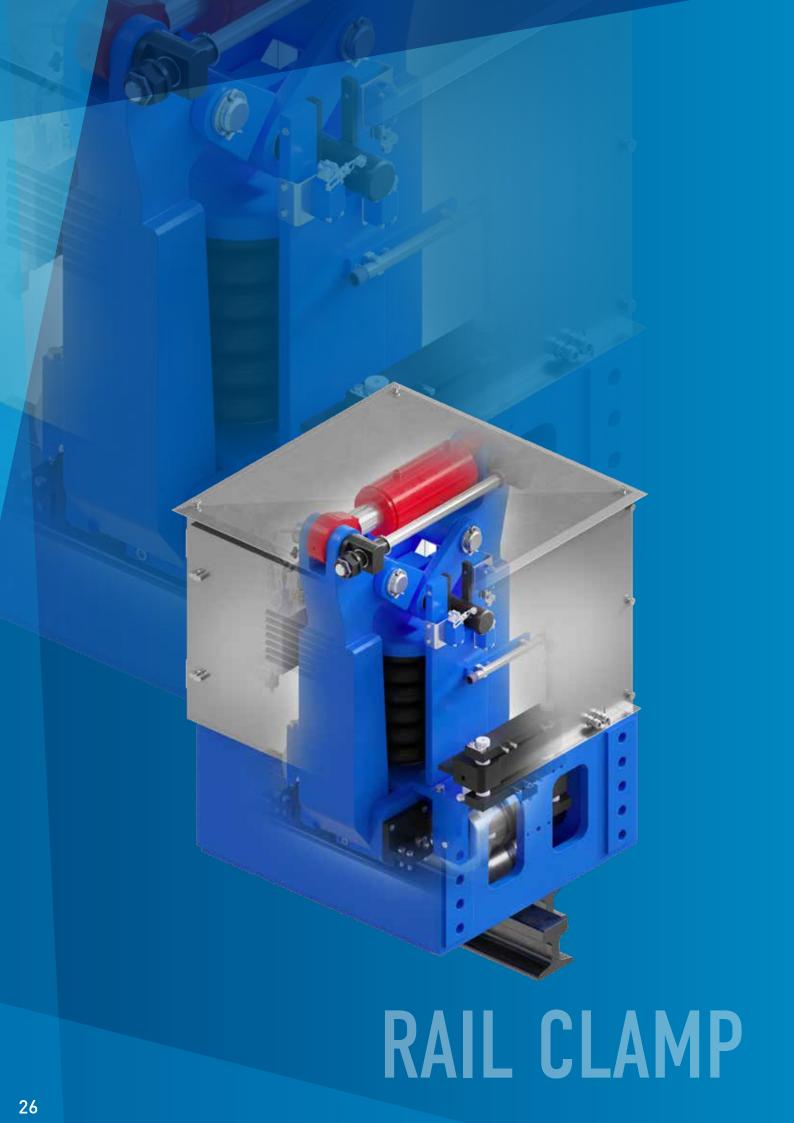

	RHI-Type		30	56	70	85	125		
	Braking Force FB (μ = 035)								
FB	@ air gap c = 1,5 mm	30	56	70	85	125			
Torque Calculation									
MBr	braking torque in Nm	king torque in Nm FB x (D-95)/2							
Hydraulic									
PL	req. release pressure	bar	40	65	80	90	90		
Pmax	max. operating press.	bar	85	110	110	150	150		
Vmax	oil volume @ c=1,5mm	ltr			0,18				
		Wheel	dimensi	ons					
b	wheel width	mm			170 - 225				
D	wheel diameter	mm			ØD				
d1	max. inner diam.	mm			d- 95 mm				
			Mass						
	Lx	W x H = ==	= x (===+b)	x === mm					
		wei	ght: 180 kg						



WHEEL BRAKE RHI 100 FC

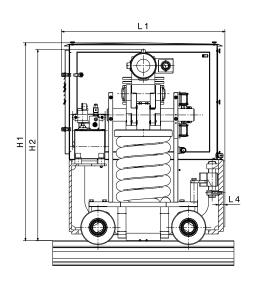
M 1501 308 E-EN-2009-03

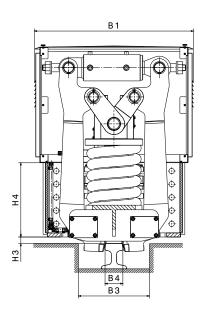


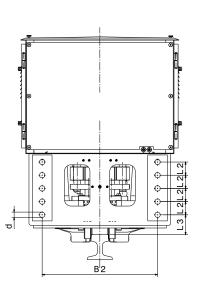


Linings								
material		sinter						
average friction coeff	μ	0,35						

	RHI-FC-Type	101	102	103	104	105			
		Clampi	ng Force	FA					
FA	@ air gap c = 1 mm	kN	29,0	45,1	55,4	74,1	83,2		
FA	@ air gap c = 2 mm	kN	28,0	43,7	52,2	68,7	77,0		
FA	@ air gap c = 3 mm	kN	27,0	41,3	48,8	62,7	74,4		
	Torque Calculation								
MBr	braking torque in Nm		:	2 x FA x 0,3	5 x (d/2-60)	1			
Hydraulic									
PL	req. release pressure	bar	35	50	60	80	95		
Pmax	max. operating press.	bar	85	85	110	110	150		
Vmax	oil volume @ c=2,0mm	ltr			0,046				
		Wheel	dimensi	ons					
b	wheel width	mm							
d	wheel diameter	mm							
d1	max. hub diam.	mm			d-280mm				
			Mass						
	Lx	W x H = ===	= x (===+b)	x === mm					
	weight: 18	0 kg (with c	onsole and	I floating br	acket)				







RAIL CLAMP

M 1501 450 E-EN-2017-12

TECHNICAL DATA:

• Airgap per side : 4,5 mm – 5 mm

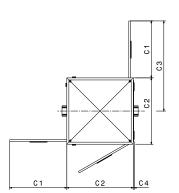
Max. wear rail/ jaw per side : 5 mm

• Ambient temperature : - 20 °C to + 50 °C

Closing time setting : 5 s to 30 s
Opening time : 10 s to 15 s

• Operating cycles : 10 to 20 times per day

• Motor voltage : 230/400 V, 50/60 Hz, S3 – 30 %


• Valve voltage : 24 V

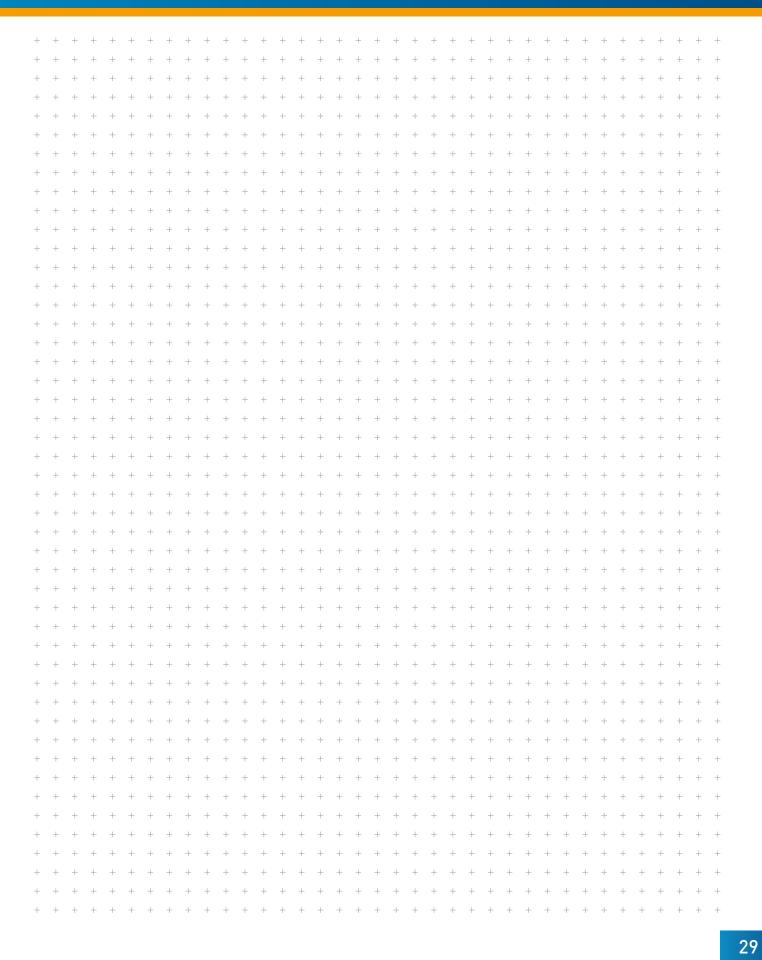
• *1 At max. rail size acc. information B4. Deviations from the standard upon request.

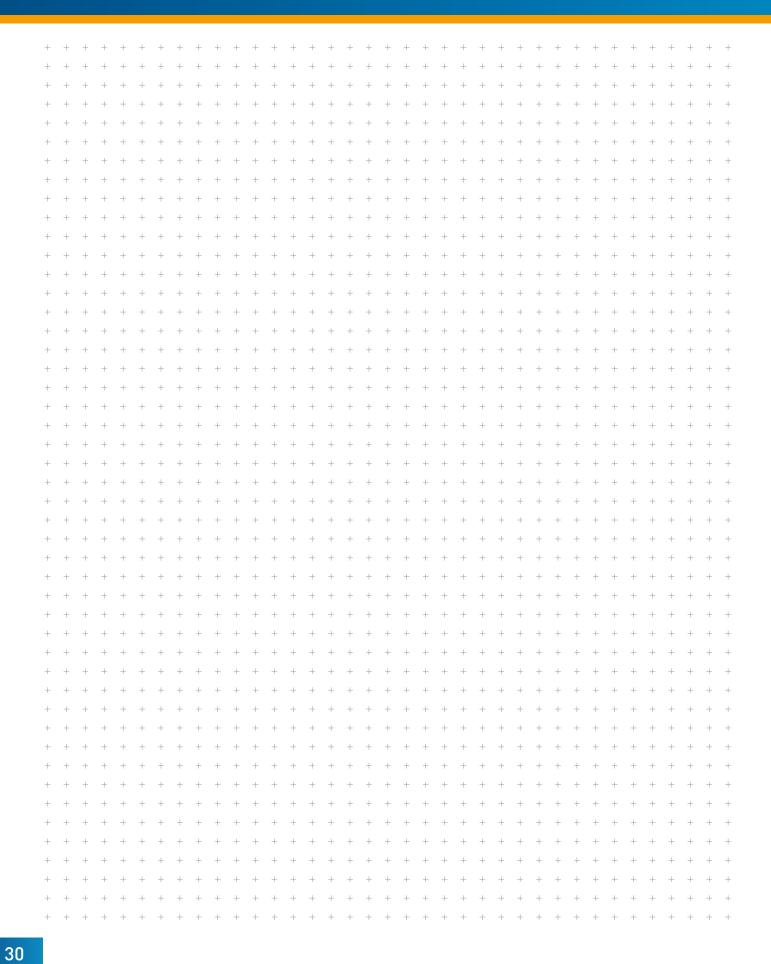
• *2 Crane rail acc. DIN, other types of crane rails upon request

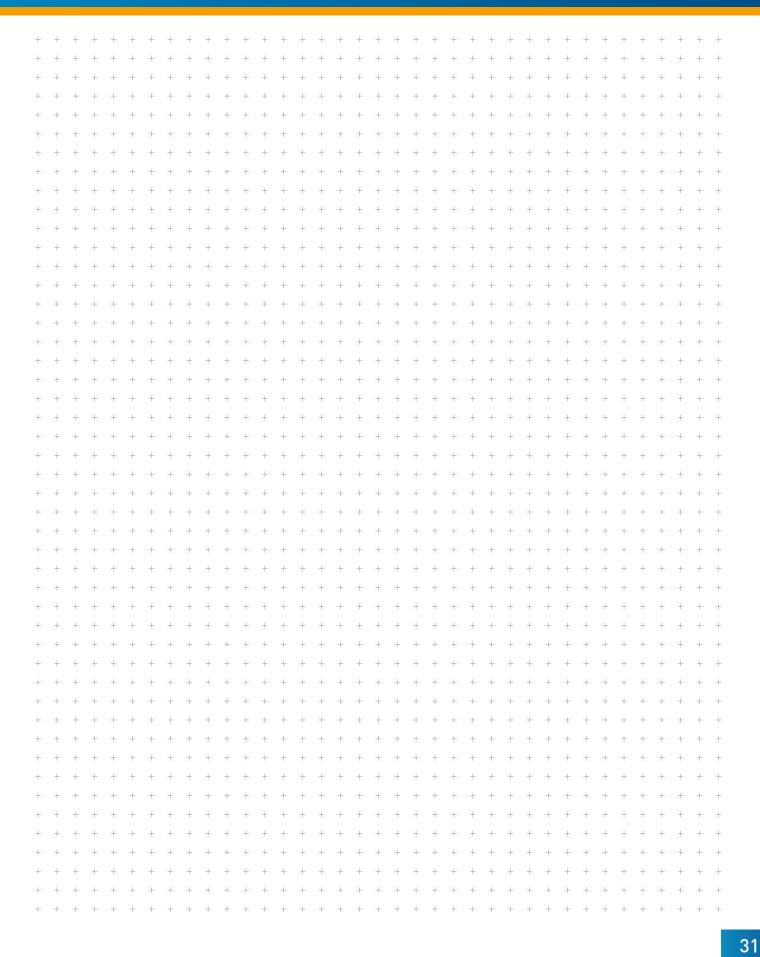
• *3 Quantity and strength grade of the screws.

o RB 200-50 : 6x M20 - 10.9 Ma = 580 Nm, $\mu = 0.14$ o RB 400-50 : 8x M24 - 10.9 Ma = 1000 Nm, $\mu = 0.14$ o RB 600-50 : 8x M30 - 10.9 Ma = 2000 Nm, $\mu = 0.14$ o RB 800-50 : 10x M30 - 10.9 Ma = 2000 Nm, $\mu = 0.14$ o RB 1000-50 : 12x M30 - 10.9 Ma = 2000 Nm, $\mu = 0.14$

RAIL CLAMP


M 1501 450 E-EN-2017-12


HOLDING FORCE AND DIMENSIONS


RB 1000-50	RB 800-50	RB 600-50	RB 400-50	RB 200-50	μŒ	Тур:
500	400	300	200	100	0,25	Holdin K
1000	800	600	400	200	0,5	Holding force [kN]
1850	1550	1190	760	520		Weight [kg]
1035	995	955	865	820		B1 [mm]
780	700	650	580	540		B2 [mm]
400	380	380	300	270		83 *1 min. [mm]
A120 A150	A120 A150	A100 A120 A150	A75 A100	A65 A75 A100		B4*2 [mm]
864	824	784	694	649		C1
1030	960	920	830	785		C2 [mm]
1394	1304	1244	1109	1042		[mm]
0	15	15	17	7		C4 [mm]
33	33	33	26	22		d*3
1248	1210	1157	997	925		[mm]
1210	1167	1116	949	842		H2 [mm]
40	40	40	40	40		[mm]
530	450	400	350	320		H4 [mm]
1046	990	951	863	808		[ww] [7
80	80	90	80	100		[mm]
120	120	115	105	110		[mm]
40	40	35	30	30		L4 [mm]

DESCRIPTION AND TECHNICAL DATA:

- The rail clamps are released electro-hydraulically and close with spring force.
- When the rail clamp is closed, the compression springs press on the pressure straps (knee lever system) in the middle, between the two clamp levers, thereby generating the clamp-ing force.
- Via this system, the ratio of the lever system is increased as the jaw/ rail wears, thereby more or less compensating for the decreasing spring force. Within the permissible wear range of the jaws/ rail, the clamping force is nearly constant.
- The rail clamp is guided on the rail by the flange wheels; this ensures the mechanics of the rail clamp with minimal play (5 mm per direction of travel) in the rail clamp housing. (float) of \pm 20 mm in the rail clamp housing. In the direction parallel to the rails, the clamp is guided is afforded horizontal freedom of movement (float) of \pm 30 mm and a vertical freedom of movement
- Lockable protection cover made of stainless steel and three inspections doors.
- The release of the rail clamp occurs via integrated hydraulic power pack (HPU) with hy-draulic cylin der. In emergency stop operation, the rail clamp can be released via hand pump connected to the HPU.
- The functional status of the rail clamp is monitored with the signals of the limit switches: "Brake open", "Brake closed", and "wear end".

L.J. Costerstraat 9 NL-3261 LH Oud-Beijerland P.O. Box 1572

NL-3260 BB Oud-Beijerland

T +31 (0)186 - 61 83 00 E info@boonebv.nl

www.boonebv.nl